Source code for PyLTSpice.raw.raw_write

#!/usr/bin/env python
# coding=utf-8

# -------------------------------------------------------------------------------
#    ____        _   _____ ____        _
#   |  _ \ _   _| | |_   _/ ___| _ __ (_) ___ ___
#   | |_) | | | | |   | | \___ \| '_ \| |/ __/ _ \
#   |  __/| |_| | |___| |  ___) | |_) | | (_|  __/
#   |_|    \__, |_____|_| |____/| .__/|_|\___\___|
#          |___/                |_|
# Name:
# Purpose:     Create RAW Files
# Author:      Nuno Brum (
# Created:     16-10-2021
# Licence:     refer to the LICENSE file
# -------------------------------------------------------------------------------

This module generates RAW Files from user data.
It can be used to combine RAW files generated by different Simulation Runs
from typing import Union
from time import strftime

from .raw_read import RawRead
from .raw_classes import DataSet
from numpy import array, float32, zeros

[docs]class Trace(DataSet): """Helper class representing a trace. This class is based on DataSet, therefore, it doesn't support STEPPED data. :param name: name of the trace being created :type name: str :param whattype: time, frequency, voltage or current :type whattype: str :param data: data for the data write :type data: list or numpy.array :param numerical_type: real or complex :type numerical_type: str """ def __init__(self, name, data, whattype='voltage', numerical_type=''): if name == 'time': whattype = 'time' elif name == 'frequency': whattype = 'frequency' if numerical_type == '': if name == 'time': numerical_type = 'double' elif name == 'frequency': raise AssertionError("For frequency plots, please specify the numerical_type:\n" "Use:\n" " * numerical_type='complex' for .AC analysis\n" " * numerical_type='double' for .NOISE analysys") elif isinstance(data[0], float32) or isinstance(data[0], float): numerical_type = 'real' elif isinstance(data[0], complex): numerical_type = 'complex' else: raise NotImplementedError DataSet.__init__(self, name, whattype, len(data), numerical_type=numerical_type) if isinstance(data, (list, tuple)): = array(data, else:[:] = data[:] # This way the dtype is kept
[docs]class RawWrite(object): """ This class represents the RAW data file being generated. Contrary to the RawRead this class doesn't support stepped data. """ def __init__(self, plot_name=None, fastacces=True, numtype='auto', encoding='utf_16_le'): self._traces = list() self.flag_numtype = numtype self.flag_forward = False self.flag_log = False self.flag_stepped = False self.flag_fastaccess = fastacces self.plot_name = plot_name self.offset = 0.0 self.encoding = encoding self._imported_data = [] self._new_axis = None def _str_flags(self): flags = [self.flag_numtype] if self.flag_forward: flags.append('forward') if self.flag_log: flags.append('log') if self.flag_stepped: flags.append('stepped') if self.flag_fastaccess: flags.append('fastaccess') return ' '.join(flags)
[docs] def add_trace(self, trace: Trace): """ Adds a trace to the RAW file. The trace needs to have the same size as trace 0 ('time', 'frequency', etc..) The first trace added defines the X-Axis and therefore the type of RAW file being generated. If no plot name was defined, it will automatically assign a name. :param trace: Needs to be of the :type trace: :return: Nothing :rtype: None """ assert isinstance(trace, Trace), "The trace needs to be of the type ""Trace""" if len(self._traces) == 0: if trace.whattype == 'time': self.plot_name = self.plot_name or 'Transient Analysis' flag_numtype = 'real' elif trace.whattype == 'frequency': if (trace.numerical_type != 'complex' and self.flag_numtype != 'complex') or 'Noise' in self.plot_name: self.plot_name = self.plot_name or 'Noise Spectral Density - (V/Hz½ or A/Hz½)' flag_numtype = 'real' else: self.plot_name = self.plot_name or 'AC Analysis' flag_numtype = 'complex' elif trace.whattype in ('voltage', 'current'): self.plot_name = self.plot_name or 'DC transfer characteristic' flag_numtype = 'real' elif trace.whattype == 'param': self.plot_name = self.plot_name or 'Operating Point' flag_numtype = 'real' else: raise ValueError("First Trace needs to be either 'time', 'frequency', 'param', 'voltage' or '...'") if self.flag_numtype == 'auto': self.flag_numtype = flag_numtype else: if len(self._traces[0]) != len(trace): raise IndexError("The trace needs to be the same size as trace 0") self._traces.append(trace)
[docs] def save(self, filename: str): """ Saves the RAW file into a file. The file format is always binary. Text based RAW output format is not supported in this version. :param filename: filename to where the RAW file is going to be written. Make sure that the extension of the file is .RAW. :type filename: str or pathlib.Path :return: Nothing :rtype: None """ if len(self._imported_data): self._consolidate() f = open(filename, 'wb') f.write("Title: * PyLTSpice RawWrite\n".encode(self.encoding)) f.write("Date: {}\n".format(strftime("%a %b %d %H:%M:%S %Y")).encode(self.encoding)) f.write("Plotname: {}\n".format(self.plot_name).encode(self.encoding)) f.write("Flags: {}\n".format(self._str_flags()).encode(self.encoding)) f.write("No. Variables: {}\n".format(len(self._traces)).encode(self.encoding)) f.write("No. Points: {:12}\n".format(len(self._traces[0])).encode(self.encoding)) f.write("Offset: {:.16e}\n".format(self.offset).encode(self.encoding)) f.write("Command: Linear Technology Corporation LTspice XVII\n".encode(self.encoding)) # f.write("Backannotation: \n".encode(self.encoding)) f.write("Variables:\n".encode(self.encoding)) for i, trace in enumerate(self._traces): f.write("\t{0}\t{1}\t{2}\n".format(i,, trace.whattype).encode(self.encoding)) total_bytes = 0 f.write("Binary:\n".encode(self.encoding)) if self.flag_fastaccess and self.flag_numtype != 'complex': # Don't know why, but complex RAW files aren't # converted to FastAccess for trace in self._traces: f.write( else: fmts = {trace: tobytes_for_trace(trace) for trace in self._traces} for i in range(len(self._traces[0])): for trace in self._traces: total_bytes += f.write(fmts[trace]([i])) f.close()
@staticmethod def _rename_netlabel(name, **kwargs) -> str: """Renames a trace name making sure that the V() or I() containers are left intact.""" # Make the rename as requested if 'rename_format' in kwargs: if name.endswith(')') and name.startswith('V(') or name.startswith('I('): new_name = name[:2] + kwargs['rename_format'].format(name[2:-1], **kwargs) + name[-1] else: new_name = kwargs['rename_format'].format(name, **kwargs) return new_name else: return name def _name_exists(self, name: str) -> bool: # first check whether it is a duplicate for trace in self._traces: if == name: return True return False
[docs] def add_traces_from_raw(self, other: RawRead, trace_filter: Union[list, tuple, str], **kwargs): """ *(Not fully implemented)* Merge two RawWrite classes together resulting in a new instance :param other: an instance of the RawRead class where the traces are going to be copied from. :type other: RawRead :param trace_filter: A list of signals that should be imported into the new file :type trace_filter: list, Tuple, or just a string for one trace :keyword force_axis_alignment: If two raw files don't have the same axis, an attempt is made to sync the two :keyword admissible_error: maximum error allowed in the sync between the two axis :keyword rename_format: when adding traces with the same name, it is possible to define a rename format. For example, if there are two traces named N001 in order to avoid duplicate names the rename format can be defined as "{}_{kwarg_name} where kwarg_name is passed as a keyword argument of this function. If just one trace is being added, this can be used to simply give the new name. :keyword step: by default only step 0 is added from the second raw. It is possible to add other steps, by using this keyword parameter. This is useful when we want to "flatten" the multiple step runs into the same view. :keyword: minimum_timestep: This parameter forces the two axis to sync using a minimum time step. That is, all time increments that are less than this parameter will be suppressed. :returns: Nothing """ force_axis_alignment = kwargs.get('force_axis_alignment', False) admissible_error = kwargs.get('admissible_error', 1e-11) from_step = kwargs.get('step', 0) minimum_timestep = kwargs.get('minimum_timestep', 0.0) if isinstance(trace_filter, str): trace_filter = [trace_filter] other_flags = other.get_raw_property('Flags').split(' ') for flag in other_flags: if flag in ('real', 'complex'): other_flag_num_type = flag break else: other_flag_num_type = 'real' if len(self._traces): # there are already traces if self.flag_numtype != other_flag_num_type: raise ValueError("The two instances should have the same type:\n" f"Source is {other_flag_num_type} and Destination is {self.flag_numtype}") if self._traces[0].whattype != other.get_trace(0).whattype: raise ValueError("The two instances should have the same axis type:\n" f"Source is {other.get_trace(0).whattype} and Destination is {self._traces[0].whattype}") if len(trace_filter) == 0: return # There is nothing to add stop here else: # No traces are present # if no X axis is present, copy from the first one self.flag_numtype = other_flag_num_type self.flag_log = 'log' in other_flags self.flag_forward = 'forward' in other_flags self.plot_name = other.get_raw_property('Plotname') oaxis = other.get_trace(0) new_axis = Trace(, other.get_axis(from_step), oaxis.whattype, oaxis.numerical_type) self._traces.append(new_axis) force_axis_alignment = False if force_axis_alignment or minimum_timestep > 0.0: if self._new_axis: my_axis = self._new_axis else: my_axis = self._traces[0].get_wave() other_axis = other.get_axis(from_step) new_axis = [] if minimum_timestep > 0.0: raise NotImplementedError else: i = 0 # incomming data counter e = 0 # existing data counter while e < len(my_axis)-1 and i < len(other_axis)-1: error = other_axis[i] - my_axis[e] if abs(error) < admissible_error: new_axis.append(my_axis[e]) i += 1 e += 1 elif error < 0: # Other axis is smaller new_axis.append(other_axis[i]) i += 1 else: new_axis.append(my_axis[e]) e += 1 # Creating the New Axis self._new_axis = new_axis for trace_name in trace_filter: imported_trace = other.get_trace(trace_name) new_name = self._rename_netlabel(trace_name, **kwargs) = new_name self._imported_data.append(imported_trace) else: assert len(self._traces[0]) == len(other.get_axis(from_step)), \ "The two instances should have the same size. To avoid this use force_axis_alignment=True option" for trace_name in trace_filter: trace = other.get_trace(trace_name) new_name = self._rename_netlabel(trace_name, **kwargs) data = trace.get_wave(from_step) self._traces.append(Trace(new_name, data, trace.whattype, numerical_type=trace.numerical_type))
@staticmethod def _interpolate(trace_data, trace_axis, new_axis: array): new_data = zeros(len(new_axis), dtype=trace_data.dtype) new_data[0] = trace_data[0] slope = (trace_data[1] - trace_data[0])/(trace_axis[1] - trace_axis[0]) i = 1 for j, t in enumerate(new_axis): while trace_axis[i] < t: i += 1 slope = (trace_data[i] - trace_data[i-1])/(trace_axis[i] - trace_axis[i-1]) new_data[j] = trace_data[i-1] + slope * (t - trace_axis[i-1]) return new_data def _consolidate(self): if self._new_axis and self._imported_data: new_axis = self._new_axis axis_length = len(new_axis) old_axis = self._traces[0] if axis_length != len(old_axis): my_axis = for trace in self._traces[1:]: = self._interpolate(, my_axis, new_axis) for imported_trace in self._imported_data: new_trace = Trace(, self._interpolate(imported_trace.get_wave(), imported_trace.axis.get_wave(), new_axis), imported_trace.whattype, imported_trace.numerical_type) self._traces.append(new_trace) self._traces[0] = Trace(, new_axis, old_axis.whattype, old_axis.numerical_type) # Replaces with the new axis self._new_axis = None self._imported_data.clear()
[docs] def get_trace(self, trace_ref): """ Retrieves the trace with the requested name (trace_ref). :param trace_ref: Name of the trace :type trace_ref: str :return: An object containing the requested trace :rtype: DataSet subclass """ if isinstance(trace_ref, str): for trace in self._traces: if trace_ref == # assert isinstance(trace, DataSet) return trace raise IndexError(f"{self} doesn't contain trace \"{trace_ref}\"\n" f"Valid traces are {[ for trc in self._traces]}") else: return self._traces[trace_ref]
def __getitem__(self, item): """Helper function to access traces by using the [ ] operator.""" return self.get_trace(item)
def tobytes_for_trace(trace: Trace): def tobytes(value): return value.tobytes() return tobytes